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Abstract: The menstrual cycle is a key indicator of women’s reproductive and endocrine health, 
influenced by hormones, lifestyle, and exercise. Accurate prediction is crucial for clinical decision-
making and personal health management. Existing studies, however, often rely on small samples 
focus on single populations, or depend on noisy self-reported app data, lacking integration of 
multimodal features and medical interpretability. To address these gaps, we propose a multilevel AI 
framework that combines statistical analysis of exercise-hormone relationships with an LSTM-based 
time-series prediction model, incorporating physical, lifestyle, and hormona indicators. Furthermore, 
we fine-tune LLaMA3 using LoRA to build a domain-specific language model for menstrual health 
question answering and prediction interpretation. Experiments demonstrate a significant negative 
correlation between daily steps and progesterone, while estradiol shows no strong association. Our 
LSTM model outperforms ARIMA, GRU, and other baselines on MSE, MAE, RMSE, and 𝑅𝑅2, while 
the fine-tuned LLaMA3 achieves superior PPL BLEU,ROUGE-L, and BERTScore compared to the 
original model. Overall, this study reveals exercise-hormone associations, proposes a robust cycle 
prediction method, and develops an intelligent health-oriented QA system, offering new tools for 
women’s health management. 

1. Introduction 
The menstrual cycle is one of the most fundamental physiological processes in women of 

reproductive age, characterized by cyclic changes in ovarian and uterine function under the regulation 
of sex hormones such as estradiol (E2) and progesterone (P4). These hormones not only determine 
reproductive function but also exert systemic effects on metabolism, bone health, cardiovascular 
function, and psychological state. However, the cycle is highly dynamic and is influenced by both 
intrinsic and extrinsic factors, including age, body composition, psychological stress, and lifestyle. 
Among these, exercise, as a modifiable lifestyle variable, has been considered closely related to 
endocrine function and menstrual health. Previous studies have suggested that exercise may alter 
circulating E2 and P4 levels, thereby affecting cycle length ovulation, and menstrual regularity, 
although the mechanisms remain insufficiently understood. Moreover, irregular cycles and hormonal 
imbalances can significantly affect women’s quality of life, fertility planning, and disease risk, 
underscoring the importance of predictive and intelligent tools for better monitoring and 
understanding of menstrual health. 

In recent years, studies have attempted to reveal the impact of exercise (e.g., step count and 
exercise intensity) on sex hormone fluctuations. A systematic review reported that moderate-
tovigorous physical activity can lead to small but significant reductions in sex hormones, effects not 
entirely explained by weight loss, and highlighted the lack of mechanistic studies in adolescent and 
reproductive-age women [1]. Another study found that women with more than10.000 daily steps had 
significantly lower progesterone levels than less active women, while no significant effect was 
observed for estradiol; the study also pointed out the limitations of wearable devices such as Fitbit in 
accurately capturing physical activity [2]. These findings suggest a potential negative correlation 
between walking and progesterone, but existing studies have mostly focused on adults and face 
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limitations in measurement tools and individual variability 
Furthermore, menstrual cycle prediction models have mostly relied on self-tracking data from 

mobile apps. For example, Li et al. developed a generative model capable of online updating with 
cycle progression, distinguishing true physiological behaviors from interruptions in user tracking. 
However, this approach still depends on long-term adherence, and cannot address missing or low-
quality data [3]. Urteaga et al. proposed a more flexible generalized Poisson model to handle 
irregularities in cycle data, yet it lacks integration of hormonal fluctuations lifestyle, and other 
multimodal features [4]. Finally, in the application of large language models (LLMs) or intelligent 
Q&A systems for menstrual health, there is still a lack of customized models grounded in clinical 
endocrinology, physiological cycles, and lifestyle behaviors. This gap limits medical interpretability 
and the ability to provide personalized, interactive health guidance. 

To address these gaps, this study combines statistical analysis, machine learning, and large 
language models to build an Al-based framework for menstrual health prediction and interaction. Our 
framework is demonstrated in Fig. 1. First, independent-sample t-tests and Pearson correlation 
analysis are employed to quantitatively evaluate the relationships between physical activity (e.g., 
daily steps) and sex hormones (E2 and P4). Second, a Long Short-Term Memory (LSTM) network is 
constructed for time-series prediction to capture the dynamic patterns of cycle length and provide 
personalized predictions. Finally, Low-Rank Adaptation (LoRA) is applied to fine-tune the LLaMA 
language model, creating a domain-specific model for menstrual health scenarios, enabling both 
medically interpretable predictions and user-friendly interactive Q&A.  

 
Figure 1 AI-based framework for menstrual health prediction and interactior. 

Our contributions are summarized as follows: 
We quantitatively analyze the relationship between physical activity (e.g., daily step counts) and 

sex hormones (E2, P4) using Pearson correlation and independent-sample t -tests, providing new 
evidence on exercise-endocrine interactions. We develop an LSTM-based time-series prediction 
model that integrates physical, lifestyle and hormonal indicators, achieving more accurate and 
personalized menstrual cycle predictions than traditional statistical and baseline machine learning 
models. ·We fine-tune the LLaMA3 language model with Low-Rank Adaptation (LoRA)to build a 
domain-specific system for menstrual health, enabling medically interpretable predictions and 
interactive Q&A functionality for end users. To the best of our knowledge, this is the first integrated 
AI framework combining statistical analysis, sequence modeling, and customized large language 
models for menstrual health monitoring and guidance. 
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2. Method 
2.1. Statistical Analysis of the Relationship between Exercise and Sex Hormones 

In the statistical analysis stage, we first employ the Pearson correlation coefficient to quantify the 
linear association between physical activity level, represented by daily step counts, and two major 
sex hormones: estradiol (E2) and progesterone (P4). The Pearson correlation coefficient 𝑟𝑟∗ ranges 
from -1≤r≤1, where r>0 indicates a positive correlation, r<0 indicates a negative correlation, and r=0 
suggests no significant linear relationship. The formula is given as:  

r = ∑ (𝑥𝑥𝑖𝑖−𝑥𝑥)𝑛𝑛
𝑖𝑖=1 (𝑦𝑦𝑖𝑖−𝑦𝑦)

�∑ (𝑥𝑥𝑖𝑖−𝑥𝑥)2𝑛𝑛
𝑖𝑖=1 ⋅�∑ (𝑦𝑦𝑖𝑖−𝑦𝑦)2𝑛𝑛

𝑖𝑖=1

                                                          (1) 

Here, 𝑋𝑋𝑖𝑖 denotes the daily step count, 𝑦𝑦𝑖𝑖 represents the corresponding hormone level, and 𝑥𝑥 and y 
are the mean values of steps and hormone concentrations, respectively. By calculating both 7 and its 
associated P-value, we can determine whether a statistically significant lineat dependence exists 
between exercise and hormone levels. 

To further examine differences in hormone levels across activity groups, participants are divided 
based on whether their average daily step count reaches 10,000 steps (≥10000 steps as the high-
activity group, <10000 steps as the low-activity group). An independent-samples t -test is then 
conducted to compare progesterone and estradiol levels between the two groups. The null hypothesis 
H_0 states that there is no significant difference inmean hormone levels between the groups. If the 
calculated P -value is less than the significance threshold (commonly α=0.05 ), the null hypothesis is 
rejected, indicating a statistically significant group difference. 

The test statistic of the independent-samples t -test is defined as: 

t = 𝑋𝑋1−𝑋𝑋2

�𝑠𝑠1
2

𝑛𝑛1
+
𝑠𝑠2
2

𝑛𝑛2

                                                                            (2) 

where 𝑋𝑋1 and 𝑋𝑋2 denote the sample means of the two groups, 𝑠𝑠12 and 𝑠𝑠22 are the sample variances, 
and 𝑛𝑛1  and 𝑚𝑚2  are the sample sizes. By comparing the computed t value with the critical value 
corresponding to the degrees of freedom and evaluating the associated P -value, we can determine 
whether significant differences in hormone concentrations exist between high and low-activity 
participants. 

Through the combination of correlation analysis and group-level comparisons, this study not only 
explores potential linear relationships between exercise and endocrine indicators but also provides 
quantitative evidence of activity-related hormonal differences. These analyses contribute to a deeper 
understanding of how physical activity may influence female reproductive endocrinology and support 
the development of exercise-informed health management strategies. 

2.2. Menstrual Cycle Prediction Using LSTM 
The length and regularity of the menstrual cycle serve as critical indicators of women’s 

reproductive health and endocrine balance [5]. Irregular cycles are often associated with polycystic 
ovary syndrome (PCOs), ovarian dysfunction, or psychological stress [6], which makes accurate 
prediction of the next cycle essential for clinical diagnosis, individual health management, and 
lifestyle planning. However, cycle variation is not solely determined by endocrine hormone 
regulation; it is also influenced by age, body mass index (BMI), lifestyle factors such as physical 
activity, and other extrinsic variables [2, 3]. These complex interactions give rise to highly dynamic 
temporal patterns that traditional linear statistical approaches are often insufficient to capture 

To address these challenges, we adopt a Long Short-Term Memory (LSTM) network, which 
extends the recurrent neural network (RNN) framework by introducing gating mechanisms that 
enable the model to retain or discard information over long temporal spans. This makes LSTM 
particularly well-suited for modeling sequential data with nonlinear dependencies, such as menstrual 
cycles. The architecture of the LSTM network is shown in Figure 2. 
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Figure 2 Illustration of the LSTM architecture, including input, forget, and output gates, which 

regulate information flow and enable long-term dependency modeling. 
Let the input sequence be denoted as  {𝑋𝑋𝑡𝑡}𝑡𝑡=1𝑇𝑇  , where 𝑋𝑋𝑡𝑡 ∈ ℝ𝑑𝑑 represents the feature vector at time 

step t. These features may include age, BMI, daily step count, estradiol (E2) and progesterone (P4) 
levels, and past cycle lengths. The LSTM computation at each time step involves the following gating 
operations 

𝑓𝑓𝑡𝑡 = 𝜎𝜎 �𝑊𝑊𝑓𝑓 [ℎ𝑡𝑡−1,𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑓𝑓� , 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1,𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑖𝑖), 

𝐶̃𝐶𝑡𝑡 = tanh(𝑊𝑊𝐶𝐶[ℎ𝑡𝑡−1,𝑋𝑋𝑡𝑡] + 𝑏𝑏𝐶𝐶)                                                     (3) 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⊙ 𝐶̃𝐶𝑡𝑡 , 

𝑜𝑜𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑜𝑜 [ℎ𝑡𝑡−1,𝑋𝑋𝑡𝑡] + 𝑏𝑏𝑜𝑜) , 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ tanh(𝐶𝐶𝑡𝑡). 
Here, 𝑓𝑓𝑡𝑡 is the forget gate that determines which past information should be discarded, 𝑖𝑖𝑡𝑡 and 𝐶̃𝐶𝑡𝑡 

together determine the contribution of new input to memory, 𝐶𝐶𝑡𝑡 denotes the updated cell state serving 
as long-term memory, 𝑜𝑜𝑡𝑡 controls the proportion of information passed to the hidden state, and ℎ𝑡𝑡 
represents the hidden representation at time step t. 

Based on the hidden state ℎ𝑡𝑡 , the model produces a prediction of the next cycle length 𝑦𝑦�𝑡𝑡+1 

𝑦𝑦�𝑡𝑡+1 = 𝑊𝑊𝑦𝑦ℎ𝑡𝑡 + 𝑏𝑏𝑦𝑦.                                                               (4) 

The training objective is to minimize the mean squared error (MSE)between the predicted cycle 
length 𝑦𝑦�𝑖𝑖 and the ground truth 𝑦𝑦𝑖𝑖 

ℒ = 1
𝑁𝑁
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑁𝑁
𝑖𝑖=1 .                                                            (5) 

By optimizing this objective, the LSTM model is able to effectively integrate historical features of 
menstrual cycles with individual physiological indicators, thereby capturing temporal dependencies 
and providing personalized predictions. Compared with traditional approaches, this framework not 
only accounts for nonlinear sequential dynamics but also enables individualized forecasting aligned 
with women’s health management. 

2.3. Domain-Specific Language Modeling with LoRA-Fine-Tuned LLaMA3 
With the rapid development of large language models (LLMs), their potential applications in 

medical question answering and health consultation have attracted increasing attention [7, 8]. 
Although general-purpose LLMs possess strong natural language processing capabilities, they often 
lack domain-specific expertise in reproductive endocrinology and menstrual health, making it 
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difficult to provide reliable and personalized explanations. To address this limitation, our study 
introduces domain adaptation techniques in the third stage, aiming to construct an intelligent Q&A 
system for menstrual health. This system integrates clinical knowledge statistical predictions, and 
user input, thereby enabling interpretable and customized support. 

As the backbone, we adopt LLaMA3 (Large Language Model Meta AI) [9], a Transformer based 
autoregressive language model. Its core architecture consists of multi-head self-attention (MHSA) 
and feed-forward networks (FFN), enabling effective long-range sequence modeling To further 
improve domain specialization with limited computational overhead, we employ Low-Rank 
Adaptation (LoRA)[10],which has proven to be an efficient fine-tuning strategy for adapting LLMs 
to specialized tasks. The structure of LLaMA3 is illustrated in Figure 3 

 
Figure 3 Basic architecture of LLaMA3, consisting of stacked Transformer layers with multi head 

self-attention and feed-forward components for autoregressive text generation. 
The fundamental idea of LLaMA3 is to predict the next token 𝑦𝑦𝑡𝑡 in a sequencegiven the preceding 

context 𝑦𝑦<𝑡𝑡, by minimizing the negative log-likelihood loss 
ℒLLaMA = −∑ log𝑇𝑇

𝑡𝑡=1 𝑃𝑃(𝑦𝑦𝑡𝑡 ∣ 𝑦𝑦<𝑡𝑡;𝜃𝜃),                                                  (6) 
where θ represents the model parameters. Through stacked Transformer blocks, the model captures 

both syntactic and semantic structures of language sequences, enabling coherent text generation. In 
LLaMA3, Meta has further expanded the model’s context length and optimized positional encoding, 
thereby improving the ability to capture dependencies across long temporal spans, which is 
particularly important for modeling longitudinal health data and interactive dialogue. 

To adapt LLaMA3 to the menstrual health domain, we employ Low-Rank Adaptatior (LoRA), a 
parameter-efficient fine-tuning (PEFT) method. Traditional fine-tuning requires updating and storing 
all parameters of the model, which is computationally expensive and memory-intensive. In contrast, 
LoRA introduces low-rank decomposition into the weigh update process. Specifically, instead of 
directly updating the full weight matrix W∈R^(d×k) LoRA constrains the update ΔW to a low-rank 
form: 

𝑊𝑊′ = 𝑊𝑊 + 𝛥𝛥𝛥𝛥, 𝛥𝛥𝛥𝛥 = 𝐴𝐴𝐴𝐴                                                             (7) 

where A∈ ℝ𝑑𝑑×𝑟𝑟 and B∈ ℝ𝑟𝑟×𝑘𝑘 , with r≪min(d,k) . During fine-tuning, the original weights W remain 
frozen, while only the low-rank matrices A and B are optimized. This significantly reduces the 
number of trainable parameters, allowing efficient adaptation without sacrificing the original 
linguistic capability of LLaMA3. 

By integrating LoRA fine-tuning with domain-specific corpora, including medical literature, 
clinical guidelines, and structured menstrual health records, our approach enables LLaMA3 to 
provide not only natural language understanding but also interpretable reasoning grounded in 
reproductive endocrinology. This design allows the model to generate personalized responses to user 
queries, link statistical predictions of cycle outcomes with explanatory knowledge, and ultimately 
serve as a hybrid system for intelligent health management. 

In summary, through parameter-efficient adaptation, our customized LLaMA3 model achieves a 
balance between general language generation ability and specialized domain knowledge. This ensures 
that the model can support interpretable Q&A on menstrual health, providing actionable insights for 
both individuals and healthcare practitioners. 
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3. Experiment 
3.1. Experimental Setup and Datasets 

All experiments were conducted on a server with an NVIDIA A100 GPU(80 GB)running Ubuntu 
20.04 LTS. The environment was based on Python 3.10 and PyTorch 2.1 

Two datasets were used. The first, collected from 85 reproductive-age women, included 
anthropometric measures (age, height, weight, BMI, body fat, muscle mass), lifestyle indicators 
(average daily steps, wearable device tracking), menstrual features (cycle length, duration, luteal 
phase, bleeding volume, pain scores), and hormonal levels of estradiol (E2) and progesterone (P4). 
These data were analyzed with Pearson correlation and t -tests, and then structured as sequences for 
LSTM-based cycle prediction 

The second dataset was a textual corpus for LoRA fine-tuning of LLaMA3, covering academic 
articles, clinical guidelines, patient-doctor dialogues, and community health discussions Additional 
lifestyle texts (diet, exercise, sleep, mental health) were included. After normalization and 
tokenization, this corpus enabled LLaMA3 to adapt to menstrual health tasks, combining predictive 
modeling with interpretable Q&A. 

3.2. Statistical Experiments on Exercise-Hormone Relationships 
To investigate the statistical associations between physical activity and hormonal fluctuations, we 

first analyzed the correlations between anthropometric variables, lifestyle indicators, and sex 
hormone levels. As shown in Figure 4, body height, weight, BMI, and body fat percent-age were 
found to be strongly and positively correlated with one another (r>0.75), indicating high internal 
consistency among these anthropometric indicators. In contrast, the correlation between average daily 
step count and progesterone (P4) levels was moderately negative (r=-0.28), suggesting that higher 
physical activity is associated with reduced progesterone. Meanwhile, the correlation between daily 
steps and estradiol (E2) levels was relatively weak (r≈-0.05), implying a less consistent relationship. 
Furthermore, correlations between menstrual cycle characteristics (e.g., cycle length, luteal phase 
duration) and hormone levels were generally low, indicating that these features may be influenced by 
multiple interacting factors rather than a single predictor. Overall, the results suggest a relatively 
stable negative association between physical activity (steps) and progesterone, while the relationship 
between estradiol and cycle features appears less significant 

  
Figure 4 Correlation heatmap of anthropometric indicators, lifestyle factors, and sex hormones. 

Daily step count shows a negative correlation with progesterone (P4), while estradiol (E2) 
correlations remain weak.  

We further compared hormone levels between two activity groups: women with high activity 
(≥10000 steps/day) and those with low activity <10000 steps/day). As illustrated in Figure 5, the 
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progesterone distribution of the high-activity group was shifted downward, with the median value 
lower than that of the low-activity group, supporting the negative correlation identified in the Pearson 
analysis. This indicates that higher physical activity may be linked to reduced progesterone levels. In 
contrast, estradiol distributions between the two groups showed no significant differences, and t -test 
results confirmed the absence of meaningful group-level variation. 

  
Figure 5 Comparison of progesterone (P4) and estradiol (E2) distributions between high activity (≧

10000 steps) and low-activity (< 10000 steps) groups. Significant group-level differences were 
observed for progesterone but not for estradiol. 

Taken together, these results highlight a consistent negative association between step count and 
progesterone, whereas estradiol levels appear unaffected by physical activity. The findings support 
the hypothesis that progesterone fluctuations may be more sensitive to lifestyle factors such as 
exercise, while estradiol regulation follows a more complex mechanism influenced by additional 
physiological variables. 

3.3. Statistical Experiments on Cycle Prediction 
In this study, we formulated menstrual cycle length as the target variable for time-series prediction 

and employed a Long Short-Term Memory (LSTM) model to capture sequential dependencies. The 
model inputs consisted of multimodal features including anthropometric indicators (e.g., age, BMI), 
lifestyle variables (e.g., daily step counts), and hormonal levels (estradiol and progesterone).The 
output was the predicted length of the next menstrual cycle. 

To rigorously evaluate predictive performance, several regression metrics were adopted. including 
Mean Squared Error (MSE), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and 
the coefficient of determination ( R^2 ). The MSE loss function used for model optimization is defined 
as 

ℒMSE = 1
𝑁𝑁
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑁𝑁
𝑖𝑖=1                                                         (8) 

where 𝑦𝑦𝑖𝑖 denotes the observed cycle length, 𝑦𝑦�𝑖𝑖 the predicted value, and N the number of samples. 
Minimizing this loss enables the model to reduce average squared prediction errors over the sequence. 
During training, the loss consistently decreased with increasing epochs and converged after 
approximately 50 iterations, indicating effective learning of sequential patterns. The resulting model 
demonstrated both stability and convergence, consistent with the statistical findings reported in 
Section 3.1 

For comparative analysis, we benchmarked the LSTM model against several baselines: the 
classical autoregressive ARIMA model, the gated recurrent unit (GRU)model, and a naive historical 
average predictor. As summarized in Table 1, the LSTM consistently outperformed. 

All baselines across evaluation metrics. In particular, it achieved the lowest RMSE and MAE while 
yielding the highest R^2 score, reflecting superior predictive accuracy and generalization. These 
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results confirm that LSTM is more effective in capturing the nonlinear and temporal dependencies 
inherent in menstrual cycle data, compared to both traditional statistical methods and simpler 
recurrent models. 
Table 1 Prediction results comparing different models on menstrual cycle length forecasting LSTM 

achieves the best performance across all evaluation metrics. 

Model MSE MAE RMSE 𝑅𝑅2 
Average 42.15 5.73 6.49 0.21 
ARIMA 35.84 5.12 5.98 0.34 

GRU 28.41 4.36 5.33 0.51 
LSTM 22.97 3.92 4.79 0.62 

In summary, the LSTM model not only reduces prediction error but also provides more 
personalized forecasts of menstrual cycle length compared to ARIMA and GRU. These findings 
suggest that deep learning methods, particularly LSTM, offer a promising approach for individualized 
reproductive health management 

3.4. LoRA-Fine-Tuned LLaMA3 Question Answering Experiments 
In the final stage of our experiments, we further evaluated the performance of the LLaMA3 model 

fine-tuned with Low-Rank Adaptation (LoRA) on domain-specific question answering tasks in 
menstrual health. The objective was to examine whether parameter-eficient fine-tuning could enhance 
the model’s ability to generate accurate and clinically meaningful responses. For this purpose, we 
constructed a domain-specific corpus covering clinical guidelines, patient-doctor dialogues, and 
community health discussions, and fine-tuned the LLaMA3 backbone using the LoRA approach 

During fine-tuning, the LoRA rank was set to r=16 , the scaling factor α=32, and the number of 
training epochs was three. Optimization was performed with AdamW using a learning rate of 
2×10−4 .This efficient training setup ensured that only a small number of additional parameters were 
introduced, while preserving most of the pretrained weights of LLaMA3. 

To evaluate the model, we adopted multiple automatic metrics. First, perplexity (PPL) was used 
to measure the model’s generative fluency, with lower values indicating better language modeling. 
In addition, BLEU and ROUGE-L were applied to assess lexical and structural overlap between 
model-generated responses and reference answers. Finally, semantic similarity was measured using 
BERTScore, which captures embedding-level alignment between generated and reference text. The 
perplexity loss function is defined as: 

ℒPPL = − 1
𝑇𝑇
∑ log𝑇𝑇
𝑡𝑡=1 𝑃𝑃(𝑦𝑦𝑡𝑡 ∣ 𝑦𝑦<𝑡𝑡;𝜃𝜃),                                                          (9) 

where 𝑦𝑦𝑡𝑡 denotes the ground-truth token at position t, 𝑦𝑦<𝑡𝑡 the preceding context, and θ the model 
parameters. 

Experimental results are summarized in Table 2. Compared with the original pretrained LLaMA3, 
the LoRA-fine-tuned model achieved substantial improvements across all evaluation metrics. 
Specifically, PPL decreased by nearly 40% , while BLEU and ROUGE-L scores improved by 7-10 
absolute points. BERTScore also showed a clear gain, indicating that the model generated responses 
that were semantically closer to expert references. 

Table 2 Performance of original LLaMA3 versus LoRA-fine-tuned LLaMA3 on domain specific 
QA tasks. LoRA fine-tuning leads to significant improvements in fluency and semantic alignment. 

Model PPL↓ BLEU↑ ROUGE-L ↑ BERTScore ↑ 
Original LLaMA3 18.6 24.7 31.5 0.812 
LLaMA3 + LoRA 11.2 32.5 41.8 0.871 

4. Conclusion 
In this study, we proposed an integrated AI framework for menstrual health monitoring that 

combines statistical analysis, time-series modeling, and domain-specific language modelling. 
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Through correlation analysis and independent-samples t-tests, we revealed a stable negative 
association between physical activity and progesterone levels, while estradiol correlations remained 
weak. An LSTM-based prediction model was then developed to forecast menstrual cycle length, 
achieving superior accuracy compared with ARIMA and GRU baselines across MSE, MAE, RMSE, 
and R^2 .Finally, we fine-tuned LLaMA3 with LoRA to construct a customized question answering 
system, which significantly reduced perplexity and improved BLEU, ROUGE-L, and BERTScore, 
thereby enhancing interpretability and user interaction Overall, our framework provides both 
quantitative predictions and personalized health guidance, offering a promising direction for 
intelligent reproductive health management. 
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